
© Copyright Ian D. Romanick 2008

1-April-2008

VGP353 – Week 4

⇨ Agenda:
 Course road-map
 Introduce shadows

 Importance of shadows
 Planar projected shadows
 Soft shadows

 First programming assignment

© Copyright Ian D. Romanick 2008

1-April-2008

What should you already know?

⇨ All of the prerequisites of VGP351 & VGP352:
 C++ and object-oriented programming

 Basic graphics terminology and concepts

 Some knowledge of linear algebra and vector math

 Using OpenGL extensions

 OpenGL Shading Language

© Copyright Ian D. Romanick 2008

1-April-2008

What will you learn?

⇨ Algorithms and supporting data-structures for
implementing shadows

 Planar projected shadows

 Shadow textures

 Shadow maps

 Shadow volumes

© Copyright Ian D. Romanick 2008

1-April-2008

Grading

⇨ Tests and quizzes
 Bi-weekly quizzes worth 5 points each
 Final exam worth 50 points

⇨ Programming assignments
 Five weekly or bi-weekly programming assignments

worth 10 points each
 One term project of at least 3 weeks worth 50 points

⇨ One in-class presentation worth 10 points

© Copyright Ian D. Romanick 2008

1-April-2008

Grading – Programming Assignments

⇨ Does the program produce the correct output?
⇨ Are the required algorithms / data-structures

used?
⇨ Is the code readable and clear?

 This includes both C++ code and shader code!

© Copyright Ian D. Romanick 2008

1-April-2008

Grading – In-class Presentation

⇨ Select one paper assigned during the term
⇨ Present a summary of the paper to the class

 What is the problem being solved?
 How does the paper solve the problem?

 What is the overall algorithm?
 What simplifying assumptions are made?
 What class of hardware does it target?

 What is novel about the presented solution?
 What is the paper's contribution?

 What questions are left unanswered?
 What areas remain for further research?

© Copyright Ian D. Romanick 2008

1-April-2008

Shadow Terms

⇨ Receiver – object that is shadowed
⇨ Caster – object that blocks light from the receiver

 May also be called occluder because it occludes the
light from the receiver

⇨ Umbra – Region on receiver that is completely
shadowed

⇨ Penumbra – Transition region between umbra
and non-shadowed area

© Copyright Ian D. Romanick 2008

1-April-2008

Shadows

⇨ Why are shadows important to 3D rendering?

© Copyright Ian D. Romanick 2008

1-April-2008

Shadows

⇨ Why are shadows important to 3D rendering?
 Provide additional information about shadow casters

 Relative position of casters
 Relative position of casters and receivers

 Provide additional information about shadow receivers
 Show additional surface detail

© Copyright Ian D. Romanick 2008

1-April-2008

Planar Projected Shadows

⇨ Simplest shadow algorithm: project object
geometry directly onto a flat plane

© Copyright Ian D. Romanick 2008

1-April-2008

Planar Projected Shadows

⇨ Simplest shadow algorithm: project object
geometry directly onto a flat plane

 As the description implies, this is accomplished using
a projection matrix

© Copyright Ian D. Romanick 2008

1-April-2008

Planar Projected Shadows

⇨ Given a point on a plane, p, and the normal of
that plane, n, the plane equation is:

 Every p
i
 where this equation is 0, is “on” the plane

d=−n⋅p
n⋅p

i
d=0

© Copyright Ian D. Romanick 2008

1-April-2008

Planar Projected Shadows

⇨ Given a plane, defined by n and d, and a
projection point, P, create a matrix that projects
an arbitrary point onto that plane:

 This matrix is similar to the matrix used to project onto
the view plane from the eye point

M p=[
n⋅Pd−P x nx −P x ny −P x nz −P x d

−P y n x n⋅Pd−P y ny −P y nz −P y d
−Pz nx −P z ny n⋅Pd−P z nz −Pz d
−n x −n y −nz n⋅P]

© Copyright Ian D. Romanick 2008

1-April-2008

Planar Projected Shadows

⇨ If n and d define the ground plane and P is the
position of the light, M

p
 will project world-space

geometry onto the ground plane

© Copyright Ian D. Romanick 2008

1-April-2008

Planar Projected Shadows

⇨ If n and d define the ground plane and P is the
position of the light, M

p
 will project world-space

geometry onto the ground plane

⇨ Question: Where do we insert M
p
 in the

transformation matrix?

© Copyright Ian D. Romanick 2008

1-April-2008

Planar Projected Shadows

⇨ If n and d define the ground plane and P is the
position of the light, M

p
 will project world-space

geometry onto the ground plane

⇨ Question: Where do we insert M
p
 in the

transformation matrix?
 Answer: After the object-to-world space

transformations, but before the world-to-eye space
transformation

M=M eyeM pMworld

© Copyright Ian D. Romanick 2008

1-April-2008

Planar Projected Shadows

⇨ Can be drawn several different ways

© Copyright Ian D. Romanick 2008

1-April-2008

Planar Projected Shadows

⇨ Can be drawn several different ways
 Disable depth buffer writes

 glDepthMask(GL_FALSE);

 Draw shadow to alpha component
 glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_TRUE);

 Re-enable depth buffer writes
 glDepthMask(GL_TRUE);

 Draw object normally
 Draw ground plane and modulate with destination

alpha
 glEnable(GL_BLEND);

glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE);

© Copyright Ian D. Romanick 2008

1-April-2008

Hard Shadows vs. Soft Shadows

⇨ Hard shadows are better than nothing, but still
not very realistic

 Perfectly hard shadows are only cast by infinitesimal
light sources...the super bright LED in a dark room

 Or if the light is very far away from the shadow caster
relative to the size of the light source

 If the light has any area, it will cast soft shadows

© Copyright Ian D. Romanick 2008

1-April-2008

Hard Shadows vs. Soft Shadows

⇨ Hard shadows are better than nothing, but still
not very realistic

 Perfectly hard shadows are only cast by infinitesimal
light sources...the super bright LED in a dark room

 Or if the light is very far away from the shadow caster
relative to the size of the light source

 If the light has any area, it will cast soft shadows
⇨ Can this technique be extended to create soft

shadows?

© Copyright Ian D. Romanick 2008

1-April-2008

Heckbert and Herf's Method

⇨ Simulate an area light with many point lights on
the area light's surface

 If lots of sample points are used, this method
produces very good results

© Copyright Ian D. Romanick 2008

1-April-2008

Heckbert and Herf's Method

⇨ Simulate an area light with many point lights on
the area light's surface

 If lots of sample points are used, this method
produces very good results

 If lots of sample points are used, this method
produces very slow results

© Copyright Ian D. Romanick 2008

1-April-2008

Heckbert and Herf's Method

⇨ Simulate an area light with many point lights on
the area light's surface

 If lots of sample points are used, this method
produces very good results

 If lots of sample points are used, this method
produces very slow results

 Some optimizations are possible:
 Scale number of samples with size of light
 Scale number of samples with distance between light and

shadow caster

© Copyright Ian D. Romanick 2008

1-April-2008

Gooch's Method

⇨ By moving the receiving plane towards and away
from the light, the penumbra can be simulated

 Accomplished by biasing d in the plane equation
 After the projecting onto the offset plane, move the

projected (flattened) object back
 The simulated penumbra is always too big

penumbra penumbra

© Copyright Ian D. Romanick 2008

1-April-2008

References

Gooch, B., Sloan, P. J., Gooch, A., Shirley, P., and Riesenfeld, R. 1999.
Interactive technical illustration. In Proceedings of the 1999 Symposium on
interactive 3D Graphics (Atlanta, Georgia, United States, April 26 - 29, 1999).
I3D '99. ACM, New York, NY, 31-38. http://www.cs.utah.edu/~bgooch/ITI/

Paul Heckbert and Michael Herf, Simulating Soft Shadows with Graphics
Hardware. CMU-CS-97-104, CS Dept, Carnegie Mellon U., Jan. 1997.
http://www.stereopsis.com/shadow/

http://www.cs.utah.edu/~bgooch/ITI/
http://www.stereopsis.com/shadow/

© Copyright Ian D. Romanick 2008

1-April-2008

Next week...

⇨ Shadow textures
⇨ Projective texturing

 We talked about this in VGP351, so this should just
be a refreher!

© Copyright Ian D. Romanick 2008

1-April-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of IBM or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

